
An Optimal Algorithm of Adjustable Delay Buffer Insertion
for Solving Clock Skew Variation Problem

Juyeon Kiml
juyeon@ssl.snu.ac.kr

Deokjin JOOl
jdj@ssl.snu.ac.kr

Taewhan Kiml,2
tkim@ssl.snu.ac.kr

lSchool of Electrical Engineering and Computer Science, Seoul National University, Seoul, Korea
2Nano Systems Institute (NSI), Seoul National University, Seoul, Korea

ABSTRACT

Meeting clock skew constraint is one of the most impor­
tant tasks in the synthesis of clock trees. Moreover, the
problem becomes much hard to tackle as the delay of clock
signals varies dynamically during execution. Recently, it
is shown that adjustable delay buffer (ADB) whose delay
can be adjusted dynamically can solve the clock skew varia­
tion problem effectively. However, inserting ADBs requires
non-negligible area and control overhead. Thus, all previous
works have invariably aimed at minimizing the number of
ADBs to be inserted, particularly under the environment of
multiple power modes in which the operating voltage applied
to some modules varies as the power mode changes. In this
work, unlike the previous works which have solved the ADB
minimization problem heuristically or locally optimally, we
propose an elegant and easily adoptable solution to over­
come the limitation of the previous works. Precisely, we
propose an O(n log n) time (bottom-up traversal) algorithm
that (1) optimally solves the problem of minimizing the num­
ber of ADBs to be inserted with continuous delay of ADBs
and (2) enables solving the ADB insertion problem with dis­
crete delay of ADBs to be greatly simple and predictable. In
addition, we propose (3) a systematic solution to an impor­
tant extension to the problem of buffer sizing combined with
the ADB insertion to further reduce the ADBs to be used.

1. INTRODUCTION
Clock is one of the most important signals on a chip, as all

the synchronous components on the chip such as flip-flops
(FFs) rely on it. Clock tree is a commonly used structure
of circuits that distributes the clock signal from the clock
source to all the clock sinks (e.g., FFs), where the clock
signal is required. It is imperative that the maximum of
the arrival time difference between the clock sinks, which is
known as clock skew, should be maintained under a certain
bounded value typically within 10% of the clock period, as a
large clock skew may cause timing violation on the circuits.

Many research works on the clock tree optimization such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC'13, May 29 - June 072013, Austin, TX, USA.
Copyright 2013 ACM 978-1-4503-2071-9/13/05 ... $15.00.

as clock routing, clock buffer insertion/sizing, and wire siz­
ing have been performed to control or minimize the clock
skew [1-7]. While these approaches were effective, advanced
low power design techniques introduced new challenges to
the clock skew control problem. Specifically, for multiple
power mode designs, where the supply voltage to the cir­
cuit components varies dynamically depending on modes,
the clock arrival time also varies dynamically.

Even though the previous works can consider the clock
skew constraint on every power mode, it would be highly
likely that the resulting clock tree uses a substantially long
wirelength or there exists no clock tree that satisfies the
clock skew constraint on every power mode. On the other
hand, post-silicon tuning (e.g., [8-11]) such as inserting Ad­
justable Delay Buffers (ADBs) is a widely used method to
deal with the timing problem caused by process and envi­
ronment variations. Because the delay of an ADB can be
controlled by its delay control inputs [12], the clock skew
variation caused by process variation can be tuned by prop­
erly inserting ADBs after the manufacturing stage has been
completed. The idea of using ADBs in multiple power modes
is to replace some of normal clock buffers with ADBs so that
the clock skew constraint on each power mode can be met;
when the power mode changes during execution, for exam­
ple from power mode mode-l to power mode mode-2, the
delays of ADBs in clock tree that have been adjusted un­
der mode-l are readjusted to meet the clock skew constraint
under mode-2. Since ADB logic component is much bigger
than normal buffer and it requires control line as well as
switching logic, the set of related problems to be solved for
the ADB-based clock skew optimization in multiple power
modes are allocating a minimum number of ADBs, finding
the normal buffers (or locations) in the clock tree that are
to be replaced by ADBs, and determining the delay value
of ADBs to be assigned on each power mode. We call the
these problems collectively ADB insertion problem.

Su et al. [13, 14] proposed a linear-time optimal algorithm
for the delay assignment problem and exploits the algorithm
to solve the rest of two subproblems of the ADB inser­
tion problem heuristically in a greedy manner. Lin, Lin,
and Ho [15] proposed an efficient algorithm of two-stage ap­
proach which performs a top-down ADB insertion followed
by a bottom-up ADB elimination. Even though the ap­
proach reduces the run time over that in [13, 14], it still
does not guarantee an optimality. Lim and Kim [16] pro­
posed a linear-time algorithm for the ADB insertion prob­
lem where they solved the problem optimally for each power
mode. However, merely collecting the optimal results on in-

dividual power modes does not mean globally optimal for
all power modes. In this work, we revisit the ADB inser­
tion problem and propose a set of solutions to overcome the
limitation of the previous works. More precisely, we pro­
pose (1) an O(n log n) time algorithm that optimally solves
the problem of minimizing the number of ADBs to be in­
serted for all power modes with continuous delay of ADBs
and (2) enables solving the ADB insertion problem with dis­
crete delay of ADBs to be greatly simple and predictable. In
addition, we propose an effective solution to an important
extended problem: (3) the ADB insertion problem combined
with buffer sizing.

2. ADB STRUCTURE AND INSERTION OF

ADB
Fig. 1 shows the structure of a capacitor bank based im­

plementation of ADB [17]. This implementation of a well
known capacitor bank based ADB consists of two invert­
ers at the input and output ports, and in the middle there
is an array of capacitors with switch transistors attached.
The switches are controlled by the capacitor bank controller,
which controls the number of active capacitors according to
the control bits.

VDD

Ti
a ••••• __ ________ ___________ ________ j Capacitor bank

Control bits Capacitor Bank Controller

Figure 1: The structure of a capacitor bank based
ADB.

400

10/3 '"
3 300 . .
� ..

200 CO 0 ..
" .; ;; 100 ,;; .. e-

O
0 40 80 120

Number of ADBs

Su et al [13], [14]
Clock signal arrival CLK-ADB [16]
ti me at mode 1 / mode 2

(a) (b)

Figure 2: (a) An example of clock tree with the
replacement of two clock buffers with ADBs. (b)
The relationship between the number of ADBs and
the total ADB area (including logic overhead) used
by [13, 14, 16].

Fig. 2(a) shows an example of clock tree that has four sinks
sl, s2, s3, and s4, two ADBs replacing two clock buffers,
and ADB control logic. Suppose there are two power modes
mode-1 and mode-2 in this design. Then, the two numbers

separated by a slash next to each sink indicate the clock
signal arrival times in mode-1 and mode-2. When the clock
skew bound is given to 10, the clock tree causes clock skew
violations in both modes if ADBs were not used. With the
replacement of two clock buffers by ADBs, the two numbers
next to each ADB indicate the delay increments (simply
called delay values) in mode-1 and mode-2: The ADB on the
left adds delay of 2 in mode-1, thus the clock signal arrival
time at s1 in mode-1 becomes 6. Likewise, the ADB on the
right adds delay of 3 in mode-2, increasing the arrival time at
s3 in mode-2 to 6. To control the ADBs' delay, a mode signal
is required. In addition, depending on the implementation
of the ADBs, control logic that converts the mode signal
to ADB's bank controller input is needed. This additional
overhead incurred by the insertion of ADBs is also shown in
Fig. 2(a).

Fig. 2(b) shows a scatter plot of the number of ADBs
inserted versus the total ADB area including the overhead,
obtained by implementing the algorithms in the previous
work [16]. The plot indicates that the number of ADBs has
a strong correlation with the total sum of the area of ADBs,
justifying that the primary objective of the ADB insertion
problem is to minimize the number of ADBs to be inserted.

3. PROBLEM DEFINITION AND MOTIVA­

TION

model 16 18 5�16 13�24 1O�16 15�21

mode2 10_16 15-21 5-11 9-15 II 16

(a)

16

10

18

15

(b)

16

10

10

II

Figure 3: A motivational example for ADB alloca­
tion and delay assignment. (a) A clock tree with
clock skew violation when skew bound is given to
10 units of delay. The initial clock signal arrival
times are shown in black numbers. With optimiza­
tion methods that rely on earliest arrival time syn­
chronization (i.e. , [16]), three ADBs are allocated
in place of buffers B, D and E. The adjusted arrival
times are shown in red or blue numbers. (b) An
optimal allocation that uses only one ADB.

PROBLEM 1. ADB insertion problem: Given a syn­
thesized clock tree, arrival times of clock sinks in each power
mode, and clock skew bound Ii, replace the least number of
clock buffers with ADBs and assign delays to the ADBs to
satisfy Ii in all power modes.

Two common features of the previous ADB insertion al­
gorithm [13, 14, 16] are that they resolve the clock skew vi­
olation by synchronizing the earliest arrival times of (two)
subtrees of interest where they set the delay value of ADB on
a root of one of the subtrees to the difference of the earliest
arrival times of the subtrees, and the delay value adjust­
ment is performed mode by mode. While this method of
delay value assignment does minimize the clock skew, their

15

16

method of applying mode by mode yields sub-optimal re- (a)
suIts that use more ADBs than necessary. For example,
Fig. 3 shows a comparison of two results of ADB allocation
where Fig. 3(a) corresponds to the result by the sub-optimal
ADB allocation algorithm in [16] while Fig. 3(b) corresponds
to an optimal result for the same input clock tree as that in
Fig. 3(a) .

4. ADB INSERTION ALGORITHM

Table l' Notations
Symbol Description

n() A node in a clock tree, which is either a buffer
or a sink;

Tni The subtree rooted at node ni;
arrn�i,m Arrival time at sink node ni at mode-m;
lstni,m The latest arrival time of the subtree rooted

at node ni in mode-m;
Ii, The given clock skew bound to meet;

Qni,m Delay value (i.e., increment) of ADB located
at node ni in mode-m;

Hni Set of child nodes of ni not to be replaced by
ADBs.

4.1 The Proposed Optimal Algorithm
First, we demonstrate the procedure of our algorithm for

the continuous delay of ADBs, called ADB-PULLUP, step­
by-step using an example to see how the algorithm works.
(The definitions of the notations used in the presentation
are in Table 1.)

Let us consider the clock signal arrival times shown in the
clock tree in Fig. 4 (a) . Let Ii, = 10. Then, ADB-PULLUP
initially assumes that each sink has a distinct fictitious ADB
at the front of it. The blue numbers at the bottom of each
sink Si indicate the delay values i.e. Cts"l in mode-l and Cts,,2
in mode-2 of the ADB in Si, i = 1, . . . , 10. We compute the
delay value by

Ctsi,m = max{O, lstroot,m - Ii, - arrSi,m} (1)

where root represents the clock source (root) node of the
clock tree. For example, Ctsl,l = max{O, 20-10-7} = 3
and Ctsl,2 = max{O, 20-10-8} = 2. Note that the value by
Eq. (1) for each sink Si corresponds to the least increase of
delay required on the fictitious ADB in Si to meet the clock
skew constraint. Then, ADB-PULLUP performs a bottom­
up traversal on the clock tree to move up (i.e., pull up) the
ADBs towards the root of clock tree.

The decision of inserting an ADB to nk which is a non­
sink and whose Ct value has been assigned is made according
to the evaluation result of the inequality:

(2)

where ni is the parent node of nk.
If the inequality is true for at least one power mode, an

ADB is inserted. For example, since Ctb4,2 (= 2) > Istroot,2-
lStb2,2 (= 20-20 = 0), an ADB is inserted to b4. However,
since Ctb5,1 (= 0) ::; Istroot,1-lstb2,1 (= 20-16 = 4) and Ctb5,2
(= 0) ::; lstroot,2 -lstb2,2 (= 20-20 = 0), no ADB is inserted
to b5. Once the decision of inserting ADBs to all children of
ni is made, the Ct value of ni is updated by

(3)

+3/+2 +0/+ 1 +0/+0 +0/+0 +0/+0 + 1/+0 +2/+0 + 11+ I +0/+2 +0/+0
model 7 14 13 16 16 9 8 9 18 20
mode2 8 9 II

(b)

1st",,] � 14, Ist",,2 � 9
H", � {sl, s2}
a",,] � max(3,O) = 3
a"'2 = max(2,1) = 2

15 17 20 17 9 8 \I

IstbS'] � 16, Istb5) � 15
Hb5 = {s3, s4}
abS,] = max(O,O) = 0
abS,2 = max(O,O) = 0

+0/+0 +0/+0 +0/+0 +0/+0 +0/+0 + I /+0 +2/+0 + 1/+ I +0/+2 +0/+0
model 7 14 13 16 16 9 8 9 18 20
mode2 8 9 II IS 17 20 17 9 8 II

(e)
Istb2,] = 16, Istb2,2 = 20
Hb2 � {b5,s5,s6} (a",,2>lstrool,2-lstb2,2)
ab2,] � max(O,O, I) � I
ab2) � max(O,O,O) � 0

+0/+0 +0/+0 +0/+0 +0/+0 +0/+0 +0/+0 +2/+0 + 11+ I +0/+2 +0/+0
model 7 14 13 16 16 9 8 9 18 20
mode2 8 9 \I 15

(d)

Istb],] = 20, Istb],2 = 20
Hb] = {} (ab2,]>lstroo1,]-lstb],]

ab3,2>lstroolFlstb],2)

17 20

• • •

17 9

model 7->1014->1713->14 16->1716->17 9->10 8->10 9->11

mode2 8->10 9->11 II 15 17 20 17->19 9->11

8 \I

18 20

8->10 11 ->13

Figure 4: Example showing step-by-step proced ure
of ADB-PULLUP: (a) A clock tree T before the ADB
insertion by ADB-PULLUP with Ii, = 10; allocating
Ctn"m for each sink ni and mode m. (b) After
the process of clock subtrees rooted at b4 and b5.
(All children nk of each subtree rooted at ni satisfy
Ctnkom ::; lstroot,m -lstn",m for all modes. Thus, no ADB
is inserted.) (c) After the process of clock subtree
rooted at b2. (Ctb4,2 > lstroot,2 - lstb2,2, thus, an ADB
is inserted at b4.) (d) The complete subtree T after
the ADB insertion by ADB-PULLUP.

where Hni 1 represents the set of ni 's children that are either
sinks or non-sinks, but not the nodes with ADB. For exam­
ple, since Hb2 = {b5, s5, s6}, ab2,1 = max { ab5,1, as5,1, as6,d
= max{O,0, I} = 1 and ab2,2 = max{ab5,2,asl,2,as2,2} =

max{O,O,O} = 0. (See b2 in Fig. 4(c).)
At this stage, from node ni where its a values are set,

we perform delay-resetting on every child, nk, of ni by call­
ing function READJUST described in Fig. 5. READJUST sub­
tracts ani,m from the sum of delays on each path from a
child of ni to its descendent sink, or set to ° if an.i,m is big­
ger than the previous sum of delays. For example, ab4,1 =

3 -min{l, 3} = 2 and ab4,2 = 2 -min{O, 2} = 2. Fig. 4(c)
shows the results of delay readjustment when the delay value
of b2 is computed by Eq. (3) . Subtree n3 is processed like­
wise. After all the nodes are processed, ADB-PULLUP re­
ports the result of ADB insertion with the updated arrival
times as shown in Fig. 4(d).

The flow of ADB-PULLUP is depicted in Fig. 5. In the
initialization phase, the an.i,m value of each sink ni is as­
signed to the minimum value by which arrni,m + ani,m is
not shorter than lstroot,m - K. This fixes the skew viola­
tions by assuming the allocation of a fictitious ADB to each
sink. The next phase is "pulling up" these ADBs to non­
sink locations of the clock tree, by performing PULLUP op­
eration in a topological order. Consider a non-sink node ni
to be processed in the flow. Each child, nk, of ni, is checked
to see if an ADB is needed according to the evaluation of
an klm > lstroot,m -lstni,m. If the evaluation is true, an
ADB is inserted to nk, otherwise, the maximum a value
(initially 0) to be assigned to ni is updated if needed. Once
the process PULLUP at the bottom loop in Fig. 5 is done,
the a values at the descendants of ni are recursively re-set
according to function READJUST. The time complexity of
ADB-PULLUP is bounded by O(KN log N) where K is the
number of power modes and N is the number of nodes of the
input clock tree. Since K is usually very small, the complex­
ity is reduced to O(N log N). The following summarizes the
properties and theorems of ADB-PULLUP. (All the proofs
are left out due to the space limitation.)

PROPERTY 1. The arrival times at sinks produced by ADB­
PULLUP never exceed lstroot,m for every mode m.

THEOREM 1. The result produced by ADB-PULLUP has a
positive value of a in a sink if and only if it is impossible for
the given clock tree to meet the clock skew bound with ADB
allocation.

Note that Property 1, which is a feature that enables to
keep the total size of capacitor banks in ADBs within a
certain limit, does not hold for the previous ADB insertion
algorithms. In addition, Theorem 1 indicates that if there
is at least one solution, ADB-PULLUP will always find an
ADB insertion solution such that the a values of all sinks
are 0.

THEOREM 2. After the execution of ADB-PULLUP on ni,
subtree Tni of clock tree T rooted at ni has been inserted with
a minimum number of ADBs while meeting the clock skew
constraint for Tni .

By theorem 2, for Troot ADB-PULLUP minimally inserts
ADBs while meeting the clock skew constraint.

lIf Hni = </J, then ani,m is set to ° for every mode m.

Clock Tree T, Skew bound K
Power modes

Sort nodes in T topologically,

Set ct.lj.m = 0, calculate !stnj.m
for every mode rn and node nj

function Readjusl(n" a, m)

ifa>O then
for every children nk ofnj do

t"1 +- min(unvn' a)
ank.m +- ct.lk,m - 1"1
Readjusl(Ok> a - 11, m)

end for
end if

end function

___ ���I�PS�i)_,
Figure 5: The flow of ADB-PULLUP.

4.2 Supporting Discrete ADB Delay
ADB-PULLUP can be easily fitted to support the discrete

delay of ADBs, which we call ADB-PULLUP-Q. If we want
to quantize ADB delays with a unit of Q, we simply assign
aSi,m of sink Si to aSi,m = i(lstroot,m - K -lsti,m)/Ql x Q
rather than using lstroot,m - K -lstni,m in Eq. (1).

THEOREM 3. If the result produced by ADB-PULLUP-Q
meets the clock constraint, all the ADBs inserted always use
the discrete delays.

Note that Theorem 3 does not mean that like to ADB-PULLUP,
ADB-PULLUP-Q always finds a valid solution if there exists
under the discrete delay of ADBs. We use the following
strategy: (1) apply ADB-PULLUP to the input clock tree;
(2) if ADB-PULLUP signals "a > ° for some sin!,;', report
"the problem is unsolvable" (according to Theorem 1) and
stop; (3) apply ADB-PULLUP-Q to the input clock tree; (4)
if ADB-PULLUP-Q returns "no a > ° for any sink", the valid
ADB insertion (according to Theorem 3) is found and stop;
(5) identify a sink with a > ° and increase its arrival time
by Q (based on Property 1) by conducting wire detouring
or wire resizing at the sink; (6) if the resulting time at the
sink exceeds the longest latency of the initial clock tree, re­
port "fail to find a solution or the problem is unsolvable" and
stop; (7) go to (3) .

The idea behind this strategy is that since ADB-PULLUP-Q
can detect the location where the ADB insertion fails and
knows the reason why it fails, by locally tuning the wires at
the detected location, the next iteration can be performed
with a higher chance of finding a valid solution of ADB in­
sertion.

5. EXTENSION: INTEGRATION OF BUFFER

SIZING
We can think of buffer sizing as an ADB insertion imposed

by the restriction that the a values in power modes are pre­
defined. For example, when a buffer bi in the input clock tree
is going to be replaced by a buffer bufj in the buffer library L
(rather than an ADB), the delay number in each power mode
may be increased or decreased, but the number is fixed,
which means un-controllable, unlike ADB. Let f3�i,m be the
delay increase or delay decrease in power mode m caused
by the replacement of buffer bi in the input clock tree by
bufj E L. We can compute all f3 values from the input clock
tree and L. Now, we want to substitute the minimal ADBs
determined by ADB-PULLUP (or ADB-PULLUP-Q) with as
many buffers in L as possible to further reduce the number
of ADBs to be inserted in the clock tree while still meeting
the clock skew constraint for every power mode. Since we
have all the f3 and a, values in every node of the clock tree
in all power modes, a naive solution is to generate all the
combinations of buffer sizing as well as ADB insertion for
all nodes, and choose the one that uses the least number of
ADBs while meeting the clock skew constraint. However, its
computation time grows exponentially as the problem size
increases. To be practically feasible, we propose a simple
but effective iterative method:

1. For each node ni in the clock tree, in which ADB-PULLUP
(or ADB-PULLUP-Q) has decided that an ADB should be
inserted in the node, for each buffer bufj E L, we compute

K

6j
= ""' (a

- f3j)2
ni � nz,m ni,m

m=l

(4)

where K is the number of modes. For example, if an"l =

+3, a� 1,2 = +1, f3�,,1 ;= +3, f3�,,22 = +2, f3�
2 ,1 +1,

and f3nl,2 = -1, then, 6nI = (3 - 3) + (1 - 2) = 1 and
6�, = (3 _ 1)2 + (1- (_1» 2 = 8.

2. Select the pair of node and buffer sizing such that the
corresponding 6 value is minimal and it satisfies the clock
skew and latency constraints. The buffer in the selected
node is then resized accordingly. For the previous example,
selecting buh is preferred to that of buh for resizing in node
n1 since 6�, < 6�" The iteration stops when there is no pair
that satisfies the skew and latency constraints or the resizing
causes the number of ADBs to increase.

3. Update the arrival times at clock sinks according to
the buffer resizing performed in step 2.
Note that the rationale behind the use of 6 is that as the
smaller the value of 6 in a node is, the more the correspond­
ing buffer sizing is likely to close to the ADB that has been
inserted to the node, thus, the buffer sizing taking over the
role of the ADB with a minimal impact on the overall tim­
ing of the clock tree. We call the ADB insertion algorithm
combined with buffer sizing ADB-PULLUP-BS for the con­
tinuous delay of ADB.

6. EXPERIMENTAL RESULTS
The proposed algorithm ADB-PULLUP (continuous de­

lay), ADB-PULLUP-Q (discrete delay), and ADB-PULLUP-BS
(combining buffer sizing) have been implemented in Python
3 language on a Linux machine with 16 cores of 2.67Ghz
Intel Xeon CPU and 51GB memory. ISCAS'95 and ITC'99
benchmarks were synthesized with Synopsys IC Compiler
with 45nm Nangate Open Cell Library. ISPD'09 bench-

co 44 ----.---- eLK-ADB [16]
q 42 ---+--- ADB-Pullup ---------. « "-" 40 .11-'
a 38 .' .'
� .' " 36

.'
.D .' E 34

.................•. .'
:::l t: 32 " CIl 30 e 28 " >
« 26

4

Number of power modes
Figure 6: The changes of the average number of
ADBs used by CLK-ADB [16] and ADB-PULLUP by
varying the number of power modes used.

marks were synthesized using the algorithm in [18]. Each
benchmark was partitioned into 6 to 10 power domains which
are able to operate in two different supply voltage levels,
0.95V and l.lV.

Table 2 summarizes the results produced by applying CLK­
ADB [16] (continuous delay), CLK-ADB-RD (discrete de-
lay) [16], ADB-PULLUP, ADB-PULLUP-Q and ADB-PULLUP-BS
to the benchmark clock trees using four power modes. The
columns in the left part of Table 2 represent the number of
flip-flop, the number of clock buffers, the worst clock skew,
the worst clock latency in the four power modes of the input
clock trees, and the clock skew constraint. The columns in
the middle part show the results by CLK-ADB [16], ADB-PULLUP,
ADB-PULLUP-BS. It is observed that ADB-PULLUP uses
consistently less number of ADBs compared to CLK-ADB.
In addition, ADB-PULLUP-BS further reduces the number
of ADBs with a slight area saving over that by ADB-PULLUP.
The results shown in the right part indicates that ADB-PULLUP-Q
uses considerably less ADBs than CLK-ADB-RD. This is be­
cause CLK-ADB-RD relies on re-iteration with tighter skew
bound when clock skew violation occurs after delay quan­
tization while ADB-PULLUP-Q can use quantized delay di­
rectly during its bottom-up phase.

Fig. 6 shows the average numbers of ADBs inserted by
CLK-ADB [16] and our ADB-PULLUP when the number of
modes varies. Clearly, ADB-PULLUP always uses less ADBs
in all situations. The gap between the results increases as
we increase the number of modes used since it is less likely
that the ADB allocation in one mode coincides with the
allocation in another mode. However, another factor to be
consider is that as the number of modes increases, more
buffers would be replaced with ADBs, which increases the
chance of the coincidence. The actual gap is a complex
function of these two factors.

7. CONCLUSIONS
In this paper, we proposed a polynomial-time optimal al­

gorithm to the problem of ADB insertion on clock trees for
the continuous ADB delay. Then, based on the algorithm,
we proposed a much simple and predictable solution to the
ADB insertion problem for the discrete ADB delay. In ad­
dition, we proposed an effective solution to the combined
problem of ADB insertion and buffer sizing. From the exper­
imental results on benchmarks, it was shown that compared
to the results by the best known ADB insertion algorithm,
our proposed algorithms reduced the number of ADBs by
13.5%, 15.4%, and 31.6% (15.0% total area reduced) on av­
erage when continuous ADB delay, discrete ADB delay, and
the integration of buffer sizing were used, respectively.

Table 2: Comparison of results produced by CLK-ADB [16], CLK-ADB-RD [16], ADB-PULLUP, ADB-PULLUP-Q
and ADB-PULLUP-BS.

Bench- #FFs/ Original Skew Continuous delay Discrete delay
mark #Bufs Skew/Lat. bound --cI;K:Au I::! l16 J AUl:l-J-'ULLUP ADB-PuLLup·BS CLK-ADB=RIYTI6T ADB'-J-'ULLUP-(,l

Circuit (ps) (ps) #AUl:l, rea I*FA tl' Area *FA tlo Area I#A Area #AI tlo Area
30 27 156.1 25 151.5 20 135.4 42 228.1 25 151.7

s35932 1728/97 264.1/545.1 40 25 147.0 23 140.0 19 126.9 26 15l.7 23 140.2
50 25 144.5 23 137.8 19 124.7 25 145.2 23 137.9
30 31 212.1 27 196.1 22 180.6 36 235.5 28 200.9

s38417 1564/89 387.1/612.1 40 28 197.9 25 184.6 20 169.0 31 211.8 26 189.4
50 26 186.5 23 173.1 18 164.4 29 200.8 23 173.3
30 22 138.3 20 127.3 14 123.2 22 138.2 20 127.4

s38584 1168/66 299.8/552.8 40 18 118.9 16 107.3 11 107.4 21 133.4 17 112.0
50 18 118.8 16 105.7 11 104.6 18 118.9 16 105.8
30 29 174.8 25 160.0 19 157.7 35 203.5 26 164.7

B17 1312/89 287.7/654.7 40 26 159.5 22 143.8 15 139.0 30 179.7 22 143.9
50 26 158.4 22 14l. 7 15 135.4 26 158.4 22 14l.8
30 150 1010.1 120 896.4 104 849.1 155 1033.8 120 897.2

B18 2752/17 405.1/825.1 40 147 988.9 118 872.3 99 817.0 153 1024.6 118 873.1
50 144 974.1 118 856.6 90 772.5 149 1003.4 118 857.4
30 32 202.8 24 17l.5 21 19l.3 33 207.6 24 17l.7

B22 583/42 354.2/690.2 40 32 202.7 24 169.1 21 186.9 32 202.8 24 169.3
50 31 197.6 24 165.3 21 179.9 32 202.7 24 165.5
30 13 80.5 13 77.1 11 72.1 13 80.5 13 77.2

F31 273/345 268.8/1268.E 40 13 80.5 13 75.8 7 57.2 13 80.5 13 75.9
50 7 50.9 7 47.4 7 47.4 7 50.9 7 47.4
30 30 171.8 24 136.9 21 128.5 30 171.8 24 137.0

F34 157/218 211.2/1137.E 40 30 171.5 24 135.1 21 126.3 30 171.8 24 135.3
50 30 17l.5 24 133.3 18 112.9 30 17l.5 24 133.5

Average Relative Values 1 1 0.86 0.89 0.68 0.85 1.07 1.05 0.87 0.90

* The columns mdlcated by "Area" represent the sum of the areas of ADBs, ADB control logic and resized buffers in J-lm2.
8. ACKNOWLEDGMENTS

This work was supported by Basic Science Research Pro­
gram through National Research Foundation (NRF) grant
(No.2011-0029805), the Center for Integrated Smart Sen­
sors funded by the Ministry of Education, Science and Tech­
nology as Global Frontier Project (CISS 2011-0031863) and
supported by the MKE (Ministry of Knowledge Economy),
Korea, under ITRC (Information Technology Research Cen­
ter) support program supervised by NIPA (National IT In­
dustry Promotion Agency) (NIPA-2012-H0301-12-1011).

9. REFERENCES
[1] c. J. Alpert, A. Devgan, and S. T. Quay, "Buffer

insertion with accurate gate and interconnect delay
computation," in DAG, 1999.

[2] J. Cong, C. Koh, and K. Leung, "Simultaneous buffer
and wire sizing for performance and power
optimization," in ISLPED, 1996.

[3] C. C. N. Chu and M. D. F. Wong, "An efficient and
optimal algorithm for simultaneous buffer and wire
sizing," IEEE TGAD, 1999.

[4] I.-M. Liu, T.-L. Chou, A. Aziz, and M. D. F. Wong,
"Zero-skew clock tree construction by simultaneous
routing, wire sizing and buffer insertion," in ISPD,
2000.

[5] T. Okamoto and J. Cong, "Buffered steiner tree
construction with wire sizing for interconnect layout
optimization," in IGGAD, 1996.

[6] J.-L. Tsai, T.-H. Chen, and C.-P. Chen, "Zero skew
clock-tree optimization with buffer insertion/sizing
and wire sizing," IEEE TGAD, 2004.

[7] K. Wang, Y. Ran, H. Jiang, and M. Marek-Sadowska,
"General skew constrained clock network sizing based
on sequential linear programming," IEEE TGAD,
2005.

[8] S. Hu and J. Hu, "Unified adaptivity optimization of
clock and logic signals," in IGGAD, 2007.

[9] V. Khandelwal and A. Srivastava, "Variability-driven
formulation for simultaneous gate sizing and
post-silicon tunability allocation," in ISPD, 2007.

[10] J.-L. Tsai and L. Zhang, "Statistical timing analysis
driven post-silicon-tunable clock-tree synthesis," in
ICGAD, 2005.

[11] E. Takahashi, Y. Kasai, M. Murakawa, and
T. Higuchi, "A post-silicon clock timing adjustment
using genetic algorithms," in Symposium on VLSI
Gircuits, 2003.

[12] S. Tam, S. Rusu, U. Nagarji Desai, R. Kim, J. Zhang,
and I. Young, "Clock generation and distribution for
the first IA-64 microprocessor," IEEE JSSG, 2000.

[13] Y.-S. Su, W.-K. Hon, C.-C. Yang, S.-C. Chang, and
Y.-J. Chang, "Value assignment of adjustable delay
buffers for clock skew minimization in multi-voltage
mode designs," in IGGAD, 2009.

[14] --, "Clock skew minimization in multi-voltage mode
designs using adjustable delay buffers," IEEE TGAD,
2010.

[15] K.-Y. Lin, H.-T. Lin, and T.-Y. Ho, "An efficient
algorithm of adjustable delay buffer insertion for clock
skew minimization in multiple dynamic supply voltage
designs," in ASPDAG, 2011.

[16] K.-H. Lim and T. Kim, "An optimal algorithm for
allocation, placement, and delay assignment of
adjustable delay buffers for clock skew minimization in
multi-voltage mode designs," in ASPDAG, 2011.

[17] N. J. A. Kapoor and S. P. Khatri, "A novel clock
distribution and dynamic de-skewing methodology," in
ICGAD, 2004.

[18] T.-Y. Kim and T. Kim, "Clock tree synthesis for
TSV-based 3D IC designs," AGM ToDAES, 2011.

