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a b s t r a c t

Meeting clock skew constraint is one of the most important tasks in the synthesis of clock trees.
Moreover, the problem becomes much hard to tackle as the delay of clock signals varies dynamically
during execution. Recently, it is shown that adjustable delay buffer (ADB) whose delay can be adjusted
dynamically can solve the clock skew variation problem effectively. However, inserting ADBs requires
non-negligible area and control overhead. Thus, all previous works have invariably aimed at minimizing
the number of ADBs to be inserted, particularly under the environment of multiple power modes in
which the operating voltage applied to some modules varies as the power mode changes. In this work,
unlike the previous works which have solved the ADB minimization problem heuristically or locally
optimally, we propose an elegant and easily adoptable solution to overcome the limitation of the pre-
vious works. Precisely, we propose an Oðn log nÞ time (bottom-up traversal) algorithm that (1) optimally
solves the problem of minimizing the number of ADBs to be allocated with continuous delay of ADBs and
(2) enables solving the ADB allocation problem with discrete delay of ADBs to be greatly simple and
predictable. In addition, we propose (3) a systematic solution to an important extension to the problem
of buffer sizing combined with the ADB allocation to further reduce the ADBs to be used. The experi-
mental results on benchmark circuits show that compared to the results produced by the best known
ADB allocation algorithm, our proposed algorithm uses, on average under 30–50 ps clock skew bound,
13.5% and 15.8% fewer numbers of ADBs for continuous and discrete ADB delays, respectively. In addition,
when buffer sizing is integrated, our algorithm uses 31.7% and 31.3% fewer numbers of ADBs, even
reducing the area of ADBs and buffers by 15.0% and 16.3% for continuous and discrete ADB delays,
respectively.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Clock is one of the most important signals on a chip of syn-
chronous based system, as all the synchronous components on the
chip such as flip-flops (FFs) rely on it. Clock tree is a commonly
used structure of circuits that distributes the clock signal from the
clock source to all the clock sinks (e.g., FFs and latches), where the
clock signal is required. It is imperative that the maximum of the
arrival time difference between the clock sinks, which is known as
global clock skew, should be maintained under a certain bounded
value typically within 10% of the clock period, as a large clock skew
may cause timing violation on the circuits. (If no confusion occurs,
the global clock skew is simply referred to as clock skew in this
presentation.)
Many research works on the clock tree optimization such as
clock routing, clock buffer insertion/sizing, and wire sizing have
been performed to control or minimize the clock skew [1–7].
While these approaches were effective, advanced low power
design techniques introduced new challenges to the clock skew
control problem. Specifically, for multiple power mode designs,
where the supply voltage to the circuit components varies dyna-
mically depending on modes, the clock arrival time also varies
accordingly.

Even though the previous works can consider the clock skew
constraint on every power mode, it would be highly likely that the
resulting clock tree uses a substantially long wirelength or there
exists no clock tree that satisfies the clock skew constraint on
every power mode. On the other hand, post-silicon tuning (e.g.,
[8–11]) such as inserting adjustable delay buffers (ADBs) is a
widely used method to deal with the timing problem caused by
process and environment variations. Because the delay of an ADB
can be controlled by its delay control inputs [12], the clock skew
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Fig. 1. The structure of a capacitor bank based ADB. The capacitor bank adjusts
signal propagation delay from the input to output ports.

Fig. 2. (a) An example of clock tree with the replacement of two clock buffers with
ADBs. (b) The relationship between the number of ADBs and the total ADB area
(including logic overhead) used by [13,14,16].
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variation caused by process variation can be tuned by properly
inserting ADBs after the manufacturing stage has been completed.
The idea of using ADBs in multiple power modes is to replace
some of normal clock buffers with ADBs so that the clock skew
constraint on each power mode can be met; when the power
mode changes during execution, e.g., from power mode mode-1 to
power mode mode-2, the delays of ADBs in clock tree that have
been adjusted under mode-1 are readjusted to meet the clock
skew constraint under mode-2. Since ADB logic component is
much bigger than normal buffer and it requires control line as well
as switching logic, the set of related problems to be solved for the
ADB-based clock skew optimization in multiple power modes are
allocating a minimum number of ADBs, finding the normal buffers
(or locations) in the clock tree that are to be replaced by ADBs, and
determining the delay value of ADBs to be assigned on each power
mode. We call these problems collectively ADB allocation problem.

Su et al. [13,14] proposed a linear-time optimal algorithm for
the delay assignment problem and exploits the algorithm to solve
the rest of two subproblems of the ADB allocation problem heur-
istically in a greedy manner. Lin et al. [15] proposed an efficient
algorithm of two-stage approach which performs a top-down ADB
allocation followed by a bottom-up ADB elimination. Even though
the approach reduces the run time over that in [13,14], it still does
not guarantee an optimality of ADB allocation. Lim and Kim [16]
proposed a linear-time algorithm for the ADB allocation problem
where they solved the problem optimally for each power mode.
However, merely collecting the optimal results on individual
power modes does not mean globally optimal for all power modes.
In this work, we revisit the ADB allocation problem and propose a
set of solutions to overcome the limitation of the previous works.
More precisely, we propose (1) an O(n log n) time algorithm that
optimally solves the problem of minimizing the number of ADBs to
be allocated for all power modes with continuous delay of ADBs
and (2) enables solving the ADB allocation problem with discrete
delay of ADBs to be greatly simple and predictable. In addition, we
propose an effective solution to an important extended problem:
(3) the ADB allocation problem combined with buffer sizing. (A
preliminary version, which contains concise descriptions and no
proofs, of our work can be found in [17].)

It should be mentioned that the work in [16] is completely
different from our proposed optimal algorithm by a simple rea-
soning: For example, [16] requires optimally two ADBs, each in
clock nodes 1 and 2, for power mode 1 while requiring optimally
two ADBs, each in nodes 3 and 4, for power mode 2. Thus, the
combined ADB allocation is four ADBs, each in nodes 1, 2, 3, and
4 to meet timing for all power modes. On the other hand, ours
produces an optimal ADB allocation result considering power
modes all together. The globally optimal allocation may be three
ADBs (i.e., not four ADBs), say, each in nodes 1–3. This reasoning
clearly foresees that as the number of power modes increases, the
gap (i.e., ADB difference) between [16] and ours will increase.

The rest of the paper is organized as follows. Section 2 illus-
trates the structure of ADB implementation and shows an example
of using ADBs for timing correction. Section 3 defines the ADB
allocation problem and shows an example to motivate the work.
Then, Section 4 proposes an optimal algorithm of ADB allocation
with continuous delay values and a modification of the algorithm
to support ADBs with discrete delay values. Section 5 proposes a
solution to the extended problem of integrating buffer sizing into
ADB allocation. Experimental results are provided in Section 6 to
show the effectiveness of our proposed ADB allocation algorithms.
Finally, a conclusion of the work given in Section 7.
2. ADB structure and example of ADB utilization

Fig. 1 shows the structure of a capacitor bank based imple-
mentation of ADB [18]. This implementation of a well-known
capacitor bank based ADB consists of two inverters at the input
and output ports, and in the middle there is an array of capacitors
with switch transistors attached. The switches are controlled by
the capacitor bank controller, which controls the number of active
capacitors according to the control bits. Activating more capacitors
increases the total capacitance between the two inverters, which
in turn increases the signal propagation delay between the input
and output ports. Inverter based ADB [19] is another imple-
mentation structure of ADB, but the adjustable delay values are
less fine-grained than that of the capacitor bank based one.

Fig. 2(a) shows an example of clock tree that has four sinks s1,
s2, s3, and s4, two ADBs replacing two clock buffers, and ADB
control logic. Suppose there are two power modes mode-1 and
mode-2 in this design. Then, the two numbers separated by a slash
next to each sink indicate the clock signal arrival times in mode-1
and mode-2. When the clock skew bound is given to 10, the clock
tree causes clock skew violations in both modes if ADBs were not
used. With the replacement of two clock buffers by ADBs, the two
numbers next to each ADB indicate the delay increments (simply
called delay values) in mode-1 and mode-2: The ADB on the left
adds delay of 2 inmode-1, thus the clock signal arrival time at s1 in
mode-1 becomes 6. Likewise, the ADB on the right adds delay of
3 in mode-2, increasing the arrival time at s3 in mode-2–6. To
control the ADBs' delay, a mode signal is required. In addition,
depending on the implementation of the ADBs, control logic that



Table 1
Notations.

Symbol Description

ni A node in a clock tree, which is either a buffer or a sink
Tni The subtree rooted at node ni
arrni ;m Arrival time at sink node ni at mode-m
lstni ;m The latest arrival time among the sinks on the subtree rooted at node

ni in mode-m
κm The given clock skew bound to meet in mode-m
αni ;m Delay value (i.e., increment) of ADB located at node ni in mode-m
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converts the mode signal to ADB's bank controller input is needed.
This additional overhead incurred by the insertion of ADBs is also
shown in Fig. 2(a).

Fig. 2 (b) shows a scatter plot of the number of ADBs allocated
versus the total ADB area including the overhead, obtained by
implementing the algorithms in the previous works [13,14,16]. The
plot indicates that the number of ADBs has a strong correlation
with the total sum of the area of ADBs, justifying that the primary
objective of the ADB allocation problem is to minimize the number
of ADBs to be inserted.
Hni Set of child nodes of ni not to be replaced by ADBs

1 This implies that the ADB allocation decision is made by considering all
power modes together.

2 If Hni ¼ϕ, then αni ;m is set to 0 for every mode m.
3. Problem definition and motivation

The problem of ADB allocation in a clock tree can be described
as

Problem 1. ADB allocation problem: Given a synthesized clock
tree, arrival times of clock sinks in each power mode m, and clock
skew bound κm in each power mode m, replace the least number
of clock buffers with ADBs and assign delays to the ADBs to satisfy
κm in every power mode m.

Two common features of the previous ADB allocation algo-
rithms [13,14,16] are that they resolve the clock skew violation by
synchronizing the earliest arrival times of (two) subtrees of interest
where they set the delay value of ADB on a root of one of the
subtrees to the difference of the earliest arrival times of the sub-
trees, and the delay value adjustment is performed mode by mode.
While this method of delay value assignment does minimize the
clock skew, their method of applying mode by mode yields sub-
optimal results that use more ADBs than necessary.

For example, consider the clock tree in Fig. 3(a) with two
operating modes mode-1 and mode-2. The initial clock signal
arrival times at sinks are shown at the bottom in black numbers.
Suppose the clock skew bound κ¼10 for two power modes.
Clearly, there are clock skew violations in both mode-1 and mode-
2; in mode-1 the clock skew is 13, which is defined by sinks s2 and
s3, and in mode-2, the clock skew is also 11, which is defined by s3
and s6. The results of ADB allocation produced by the previous
algorithm [16] for the clock tree is shown in Fig. 3(a) where buffers
B, D, and E are replaced with ADBs and the adjusted arrival times
are shown in red and blue numbers next to the initial delays. The
delay adjustment procedure is as follows. In mode-1, the earliest
arrival time (¼5) of the subtrees rooted at D is synchronized to the
earliest arrival time (¼16) of the subtree rooted at C by assigning
delay increment of 11 to the ADB in node D. However, the delay
adjustment at D increases the arrival time at sink s4 from 13 to 24,
which causes another skew violation due to the times in s4 and s5.
The violation is then resolved by assigning delay increment of 6 to
the ADB in node E. Likewise, in mode-2 the clock skew violation
due to the times at s3 and s6 is resolved by assigning delay
increment of 6 to the ADB in node B. From the ADB allocation and
delay assignment, we observe that (1) synchronizing a subtree's
earliest arrival time (e.g., time at s3 in mode-1) introduces the
delay increase at another sink (e.g., s4), so that additional ADB
allocation with delay adjustment shall be needed; (2) even though
the skew violation in mode-2 requires one ADB to be allocated,
node B is not the only position at which an ADB could be allocated.
An alternative position is D, which coincides with the ADB allo-
cation in mode-1. An optimal ADB allocation is shown in Fig. 3
(c) in which only one ADB with delay increment of 3 in mode-1
and 1 in mode-2 is inserted to the tree. This example clearly shows
that delay adjustment according to the synchronization of the
earliest arrival times does not always yield optimal results.
Furthermore, in order to find optimal results, ADB allocation
should consider all modes simultaneously.
4. Optimal ADB allocation

This section describes our proposed ADB allocation algorithms
with continuously and discretely adjustable values of ADBs. The
notations commonly used in the presentation is summarized in
Table 1.

4.1. The proposed algorithm

First, we demonstrate the procedure of our algorithm for the
continuous delay of ADBs, called ADB-PULLUP, step-by-step using an
example to see how the algorithm works. Then, we describe the
flow of the algorithm and the properties of the algorithm.

Let us consider the clock signal arrival times shown in the clock
tree in Fig. 4(a). Let κm¼10 for all m. Then, ADB-PULLUP initially
assumes that each sink has a distinct fictitious ADB at the front of
it. The blue numbers at the bottom of each sink si indicate the
delay values, i.e., αsi ;1 in mode-1 and αsi ;2 in mode-2 of the ADB in
si, i¼ 1;…;10. We compute the delay value by

αsi ;m ¼maxf0; lstroot;m�κm�arrsi ;mg ð1Þ
where root represents the clock source (root) node of the clock
tree. For example, αs1;1 ¼maxf0;20�10�7g¼3 and αs1;2 ¼max
f0;20�10�8g ¼ 2. Note that the value by Eq. (1) for each sink si
corresponds to the least increase of delay required on the fictitious
ADB in si to meet the clock skew constraint. Then, ADB-PULLUP

performs a bottom-up traversal on the clock tree to move up (i.e.,
pull up) the ADBs towards the root of clock tree.

The decision of allocating an ADB at nk which is a non-sink and
whose α value has been assigned is made according to the eva-
luation result of the inequality:

αnk ;m4 lstroot;m� lstni ;m ð2Þ
where ni is the parent node of nk.

If the inequality is true for at least one power mode, an ADB is
allocated.1 For example, since αb4;2ð ¼ 2Þ4 lstroot;2� lstb2;2
ð ¼ 20�20¼ 0Þ, an ADB is inserted to b4. However, since αb5;1ð ¼
0Þr lstroot;1� lstb2;1ð ¼ 20�16¼ 4Þ and αb5;2ð ¼ 0Þr lstroot;2� lstb2;2
ð ¼ 20�20¼ 0Þ, no ADB is inserted to b5. (The computation of αb4;2

and αb5;1 are shown in Fig. 4(a).) Once the decision of allocating
ADBs to all children of ni is made, the α value of ni is updated by

αni ;m ¼maxfαnk ;m : nkAHni g ð3Þ
where Hni

2 represents the set of ni's children that are either sinks
or non-sinks, but not the nodes with ADB. For example, since



Fig. 3. A motivational example for ADB allocation and delay assignment. (a) A clock tree with clock skew violation when the skew bound is given to 10 units of delay. The
initial clock signal arrival times are shown in black numbers. With optimization methods that rely on earliest arrival time synchronization (i.e., [16]), three ADBs are allocated
in place of buffers B, D and E. The adjusted arrival times are shown in red or blue numbers. (b) An optimal allocation which uses one ADB. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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Hb2 ¼ fb5; s5; s6g, αb2;1¼maxfαb5;1;αs5;1;αs6;1g¼maxf0;0;1g¼1
and αb2;2¼maxfαb5;2;αs1;2;αs2;2g¼maxf0;0;0g¼0. (See b2 in Fig. 4
(c).)

At this stage, from node niwhere its α values are set, we recursively
perform delay-resetting on every descendant, nk, of ni by calling
function READJUST described in Fig. 5. READJUST subtracts αni ;m from the
sum of delays on each path from a child of ni to its descendent sink, or
set to 0 if αni ;m is bigger than the previous sum of delays. For example,
αb4;1 ¼ 3�minf1;3g ¼ 2 and αb4;2 ¼ 2� minf0;2g ¼ 2. Fig. 4
(c) shows the results of delay readjustment when the delay value of b2
is computed by Eq. (3). Subtree Tb3 is processed likewise. After all the
nodes are processed, ADB-PULLUP reports the result of ADB insertion
with the updated arrival times as shown in Fig. 4(d).

The flow of ADB-PULLUP is depicted in Fig. 5. In the initialization
phase, the αni ;m value of each sink ni is assigned to theminimumvalue
by which arrni ;mþαni ;m is not shorter than lstroot;m�κm. This fixes the
skew violations by assuming the allocation of a fictitious ADB to each
sink. The next phase is “pulling up” these ADBs to non-sink locations
of the clock tree, by performing PULLUP operation in a topological order.
Consider a non-sink node ni to be processed in the flow. Each child, nk,
of ni, is checked to see if an ADB is needed according to the evaluation
of αnk ;m4 lstroot;m� lstni ;m. If the evaluation is true, an ADB is inserted
to nk, otherwise, the maximum α value (initially 0) to be assigned to ni
is updated if needed. Once the process PULLUP at the bottom loop in
Fig. 5 is done, the α values at the descendants of ni are recursively re-
set according to function READJUST. The time complexity of ADB-PULLUPis
bounded by OðKN log NÞ where K is the number of power modes and
N is the number of nodes of the input clock tree. Since K is usually
very small, the complexity is reduced to OðN log NÞ. The detailed
derivation of the time complexity of ADB-PULLUP is the following: O(N)
time is taken to sort nodes in topological order and O(KN) time to
compute the lst values of all nodes. Likewise, O(KN) time is taken to
assign the α values for all leaf nodes and O(KN) to the determination
of ADB placement to nodes. Finally, OðK log NÞ time is taken for each
call (i.e., each node) to READJUST function since the number of ancestors
of a node is Oðlog NÞ, resulting in the total time of OðKN log NÞ, which
is the most dominant in the steps of ADB-PULLUP.

The following summarizes the properties and theorems of
ADB-PULLUP.

Property 1. The arrival times at sinks produced by ADB-PULLUP never
exceed lstroot;m for every mode m.

Proof. For simplifying notations, we drop the power mode symbol
m in the presentation of the proofs. For a power mode, let Lnlnk-sj

be
the sum of the α values of the nodes on the path from nk to a sink
sj which is on the subtree rooted at nk after READJUST is applied to nl
and αinit
nk

be the α value of nk before the application of READJUST to its
parent. (Lsjsj-sj ¼ αinit

sj
since READJUST is not applicable to sinks.)

We claim that the following inequality is hold:

Lni
ni-sj

þarrsj r lstroot : ð4Þ

We use induction in terms of the depth, D, of the subtree rooted at
ni.

Basis: D¼1 corresponds to the case where ni is a sink, which
means sj and ni in Eq. (4) are identical. Thus, Lni

ni-sj
þarrsj ¼

αinit
sj þarrsj . By Eq. (1), αinit

sj þarrsj r lstroot .
Induction step: By the induction hypothesis, for every nk, it is

true that

Lnk
nk-sj

þarrsj r lstroot ð5Þ

where ni is the parent of nk and sj is a sink in the subtree rooted at
nk.

Case 1. When Lnk
nk-sj

Zαinit
ni

: after the application of READJUST to ni,
Lni
nk-sj ¼Lnknk-sj �αinit

ni . Thus, Lni
ni-sj þarrsj ¼ Lni

nk-sj þαinit
ni

þarrsj ¼
Lnk
nk-sj

�αinit
ni

þαinit
ni

þarrsj ¼ Lnk
nk-sj

þarrsj r lstroot by Eq. (5).

Case 2. When Lnk
nk-sj

oαinit
ni

: by Eq. (2), after the application of
READJUST to ni,

Lni
ni-sj

¼ αinit
ni

; ð6Þ

and according to Eq. (1) and the definition of lstni ,

αinit
ni

r lstroot� lstni r lstroot�arrsj : ð7Þ

Therefore, Lnini-sj þarrsj ¼αinit
ni

þarrsj r lstroot .
From Cases 1 and 2, Eq. (5) holds for any ni. Thus, Property 1

holds for root as well.□

Note that some clock trees have no solution of ADB allocation. For
example, consider a simple clock tree shown in Fig. 6 with clock skew
bound κ¼10. The clock arrival times 13 at sink s2 and 2 at sink s3
cause the clock skew violation. However, it can be easily seen that
whatever ADB allocations are attempted to A or B, it is not possible to
resolve the skew violation. We formally classify the input clock trees
into ADB-solvable or ADB-unsolvable as follows:

Definition 1. It is said that a clock tree Twith κ is ADB-unsolvable if
there is a node niAT such that lstni �arrmin

SðniÞ4κ in which SðniÞ is the
set of sinks which are directly connected to ni, arrmin

SðniÞ is the mini-
mum among the arrival times of sinks in SðniÞ, and arrmin

SðniÞ ¼1 if
SðniÞ ¼ϕ. For example, in Fig. 6, SðAÞ ¼ fs3; s4g and lstA�arrmin

SðAÞ ¼
13�2¼ 114κð ¼ 10Þ. Thus, the clock tree in Fig. 6 is said to be ADB-



Fig. 4. Example showing step-by-step procedure of ADB-PULLUP: (a) A clock tree T before the ADB insertion by ADB-PULLUP with κ¼ 10; allocating αni ;m for each sink ni and
mode m. (b) After the process of clock subtrees rooted at b4 and b5. (All children nk of each subtree rooted at ni satisfy αnk ;mr lstroot;m� lstni ;m for all modes. Thus, no ADB is
inserted.) (c) After the process of clock subtree rooted at b2. (αb4;24 lstroot;2� lstb2;2, thus, an ADB is inserted at b4.) (d) The complete subtree T after the ADB insertion by ADB-
PULLUP. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 5. The flow of ADB-PULLUP.

Fig. 6. An example of clock tree that belongs to ADB-unsolvable when clock skew
bound κ¼10.
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unsolvable. For the clock trees in which there is no node niAT such
that lstni �arrmin

SðniÞ4κ, they are said to be ADB-solvable.

Theorem 1. ADB-PULLUP allocates ADBs on sinks if and only if the
input clock tree is ADB-unsolvable.

Proof. ()) If an ADB is allocated at sk, which is a child of ni,

αinit
sk

4 lstroot� lstni ð8Þ

for some mode m by Eq. (2).
Since αinit

sk
4 lstroot� lstni Z0, Eq. (1) implies

αinit
sk

¼ lstroot�arrsk �κ: ð9Þ

Clearly,

arrmin
SðniÞrarrsk : ð10Þ

By Eq. (10), lstni �arrmin
SðniÞZ lstni �arrsk and by Eq. (9),

lstni �arrsk ¼ lstni þαinit
sk

� lstrootþκ, which is greater than κ by Eq.
(8). Thus, lstni �arrmin

SðniÞ4κ.
(()Since the clock tree is ADB-unsolvable, there is ni such that
lstni �arrmin

SðniÞ4κ. Moreover, since arrmin
SðniÞo1, SðniÞaϕ. Let skASð

niÞ such that arrmin
SðniÞ ¼ arrsk . Then, lstni �arrsk ¼ lstni �arrmin

SðniÞ4κ.
Thus, by Eq. (1), αinit

sk
Z lstroot�arrsk �κ 4 lstroot� lstni , which

enables the allocation of ADB at sk according to Eq. (2).□

Note that Property 1, which is a feature that enables to keep the
total size of capacitor banks in ADBs within a certain limit, does
not hold for the previous ADB allocation algorithms. In addition,
Theorem 1 indicates that if there is at least one solution, ADB-
PULLUP will always find an ADB allocation solution such that the α
values of all sinks are 0.



Fig. 7. The overall sketch of our proof on Theorem 2.
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To facilitate the proof of the optimality of our proposed algo-
rithm, we define terms ADB-FREE-PATH and EST-NAi,m, and provide one
lemma.

Definition 2. If the path from node n (exclusive) to a sink r
(exclusive) in a clock tree contains no ADB, the path is called ADB-
FREE-PATH and the sink is said to has ADB-FREE-PATH from n.

Definition 3. EST-NA ni ;m represents the earliest one among the
arrival times to the sinks which have ADB-FREE-PATH from ni in
power mode m. EST-NA ni ;m ¼1 if there exists no such sink.

Lemma 1. During the process of ADB-PULLUP, if αinit
ni ;m

40 for a power
mode m, a sink exists in subtree Tni such that the arrival time at the
sink is lstroot;m�κm�αinit

ni ;m and the sink has ADB-FREE-PATH from ni.

Proof. Let h denote the height of Tni . If h¼1, Tni has only sinks as
the children, Thus, the lemma holds. Let us assume that the lemma
is true for hoL. We now want to show that the lemma is true for
h¼L: By Eq. (3), if αinit

ni ;m40 for any ni with its height of L, there
exists a child node nkj of Hni such that αinit

nkj ;m
¼ αinit

ni ;m(40). Since Tnkj
has a sink whose arrival time is lstroot;m�κm�αinit

nkj ;m
on ADB-FREE-

PATH from ni, Tni also has a sink on ADB-FREE-PATH and arrival time of
lstroot;m�κm�αinit

ni ;m.□

Theorem 2. After the application of ADB-PULLUP to ni in clock tree T,
the resulting subtree Tni has been allocated with a minimum number
of ADBs while meeting the clock skew constraint for Tni .

Proof. The proof of the optimality of ADB-PULLUP involves “cut-
and-paste” argument. Let NðTni Þ denote the number of ADBs in
subtree Tni except the root ni. Let Xni ¼ 1 if node ni has an ADB, and
Xni ¼ 0, otherwise.

We want to show that (1) NðTni Þ is the smallest number among
those of all feasible ADB allocations on the subtree rooted at ni and
(2) for each power mode m, Tni has the largest value of EST-NA ni ;m

among those of all feasible ADB allocations with the number of
ADBs¼NðTni Þ. For example, if ðNðTni Þ; est� nani ;mÞ ¼ ð4;10Þ, other
feasible solutions could be ð5;12Þ, ð5;8Þ, ð4;11Þ, and ð4;10Þ, but will
not be ð3;12Þ or ð4;9Þ. Let h be the height of Tni .

� When h¼1: all children of ni are sinks. Thus, NðTni Þ ¼ 0, which is
trivially solvable, and est� nani ;m ¼1 for every power mode.

� When h¼L: let us assume this theorem holds for hoL. If the
theorem is not true for h¼L, there is a subtree T 0

ni
produced by

an ADB allocation such that (1) NðT 0
ni
ÞoNðTni Þ or (2) NðT 0

ni
Þ ¼N

ðTni Þ and EST-NA 0
ni ;m4est� nani ;m for some mode m.

We want to prove that T 0
ni
, which meets the above condition,

dose not exist, following the order illustrated in Fig. 7. In Fig. 7
(a), the clock trees Tni and T 0

ni
with ADBs are given. We will

generate Tni″ as shown in Fig. 7(b) by replacing one child
subtree T 0

nkj
of T 0

ni
with Tnkj

corresponding to subtree of Tni .
For all cases, we show that (n) NðT″

ni
ÞoNðT 0

ni
Þ, or NðT″

ni
Þ ¼NðT 0

ni
Þ

and est� nani ;m″Zest� na0ni ;m for every mode m.
As shown in Fig. 7(d), we can replace every child subtree T 0

nkj

with Tnkj
. Let Tf

ni
denote the ADB allocation tree produced by the

process of replacement. Clearly, Tf
ni

satisfies NðTf
ni
ÞoNðT 0

ni
Þ, or

NðTf
ni
Þ ¼NðT 0

ni
Þ and est� nafni ;mZest� na0ni ;m

for every mode m.

However, Tf
ni
has the same values of N and EST-NA as those of Tni ,

contradicting the assumption that NðTni
0ÞoNðTni Þ, or NðT 0

ni
Þ ¼N

ðTni Þ and est� na0ni ;m
4est� nani ;m for some power mode m.

Now, we prove (n): We use the fact that the theorem holds for
hoL, (1) NðTnkj

ÞoNðT 0
nkj
Þ or (2) NðTnkj

Þ ¼NðT 0
nkj
Þ and est� nankj ;m

Zest� na0nkj ;m
for every power mode.

Case1: When NðTnkj
ÞoNðT 0

nkj
Þ:
Case 1.1: When nkj (¼nkj″) has an ADB: NðT″
ni
Þ ¼NðT 0

ni
Þ�ðNðT 0

nkj

ÞþX0
nkj
ÞþðNðTnkj

ÞþXnkj
Þ oNðT 0

ni
Þ�Xnkj

þ1rNðT 0
ni
Þþ1. Thus,

NðTni″ÞrNðT 0
ni Þ. Moreover, since all sinks with ADB-FREE-PATH in

T″
ni
are also in T 0

ni
, est� na″ni ;mZest� na0ni ;m

for every m.
Case 1.2: When nkj has no ADB:

Since Xnkj
¼ 0, NðTni″Þ ¼NðT 0

ni
Þ�ðNðT 0

nkj
ÞþX0

nkj
ÞþðNðTnkj

Þþ
Xnkj

ÞoNðT 0
ni
Þ.
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Case 2: When NðTnkj
Þ ¼NðT 0

nkj
Þ and est� nankj

;mZest� na0nkj ;m
:

Case 2.1: When nkj has an ADB:

Since αinit
nkj

;m40 for a power mode m, by Lemma 1, lstni ;m�
est� na0nkj ;m

Z lstni ;m�est� nankj
;m ¼ lstni ;m�

ðlstroot;m�κm�αinit
nkj

;mÞ4κm. Thus, n0
kj

has an ADB. In addition,

since the sinks with ADB-FREE-PATH are the same for T 0
ni

and T″
ni
,

NðT″
ni Þ ¼NðT 0

ni
Þ�ðNðT 0

nkj
ÞþX0

nkj
ÞþðNðTnkj

ÞþXnkj
Þ ¼NðT 0

ni
Þ and

est� nani ;m″¼ est� na0ni ;m for every m.
Case 2.2: When nkj has no ADB:

NðT″
ni Þ ¼NðT 0

ni
Þ�ðNðT 0

nkj
ÞþX0

nkj
ÞþðNðTnkj

ÞþXnkj
Þ ¼NðT 0

ni
Þ�

NðT 0
nkj
ÞþNðTnkj

ÞrNðT 0
ni
Þ. Since Tni″ and T 0

ni
have the same sinks

with ADB-FREE-PATH except the sinks in their subtrees rooted at
nkj , est� nankj

;m″Zest� na0nkj ;m
for every m. If n0

kj
has an ADB,

NðTni″ÞoNðT 0
ni Þ. □

By Theorem 2, it claims that Troot produced by the application of
ADB-PULLUP uses a minimal number of ADBs while meeting the
clock skew constraint.

4.2. Supporting discrete ADB delay

By slightly updating the computation of α values in ADB-PULLUP,
it is possible to the ADB allocation with ADBs of discrete delay
increments. (We call our updated ADB algorithm ADB-PULLUP-Q.)
Precisely, if we want to quantize ADB delay increments with a unit
of Q, we simply assign αsi ;m of sink si to αsi ;m ¼ ⌈ðlstroot;m�κm�
lsti;mÞ=Q⌉� Q rather than using lstroot;m�κm� lstni ;m in Eq. (1).

Theorem 3. If the ADB allocation produced by ADB-PULLUP-Q meets
the clock constraint (i.e., if ADB-PULLUP-Q does not return “error”), all
the allocated ADBs always use the discrete delay increments.

A. fter the assignment of the initial α values to every sink si,
αsi ¼ ⌈ðlstroot;m�κm� lsti;mÞ=Q⌉� Q , which is a correctly quantized
value. In addition, during the PULLUP process at its parent ni, the
value of αsi may be moved up to ni when αni r lstroot� lstni . Con-
sequently, αni is a correctly quantized value as well. Similarly,
during the READJUST process at ni, the α values of its children are
also correctly quantized ones. To generalize, the initial setting and
updating of α values in all nodes are correctly quantized values
because the outcomes of subtraction, addition, and maximum-
selection among the correctly quantized values are also correctly
quantized ones.

Note that Theorem 3 does not mean that like to ADB-PULLUP,
ADB-PULLUP-Q always finds a valid solution if there exists under the
discrete delay of ADBs. We use the following strategy: (1) apply
ADB-PULLUP to the input clock tree; (2) if ADB-PULLUP signals “α40
for some sink”, report “the problem is unsolvable” (according to
Theorem 1) and stop; (3) apply ADB-PULLUP-Qto the input clock
tree; (4) if ADB-PULLUP-Qreturns “no α40 for any sink”, the valid
ADB allocation (according to Theorem 3) is found and stop;
(5) identify a sink with α40 and increase its arrival time by Q
(based on Property 1) by conducting wire detouring or wire
resizing at the sink; (6) if the resulting time at the sink exceeds the
longest latency of the initial clock tree, report “fail to find a solu-
tion or the problem is unsolvable” and stop; (7) go to (3).

The idea behind this strategy is that since ADB-PULLUP-Q can
detect the location where the ADB allocation fails and knows the
reason why it fails, by locally tuning the wires at the detected
location, the next iteration can be performed with a higher chance
of finding a valid solution of ADB allocation.
5. Extension: integration of buffer sizing

We can think of buffer sizing as an ADB allocation imposed by
the restriction that the α values in power modes are pre-defined.
For example, when a buffer bi in the input clock tree is going to be
replaced by a buffer bufj in the buffer library L (rather than an
ADB), the delay number in each power mode may be increased or
decreased, but the number is fixed, which means un-controllable,
unlike ADB. Let βj

ni ;m be the delay increase or delay decrease in
power mode m caused by the replacement of buffer bi in the input
clock tree by buf jAL. We can compute all β values from the input
clock tree and L. Now, we want to substitute the minimal ADBs
determined by ADB-PULLUP(or ADB-PULLUP-Q) with as many buffers
in L as possible to further reduce the number of ADBs to be
inserted in the clock tree while still meeting the clock skew con-
straint for every power mode. Since we have all the β and α values
in every node of the clock tree in all power modes, a naive solution
is to generate all the combinations of buffer sizing as well as ADB
insertion for all nodes, and choose the one that uses the least
number of ADBs while meeting the clock skew constraint. How-
ever, its computation time grows exponentially as the problem
size increases. To be practically feasible, we propose a simple but
effective iterative method:

1. For each node ni in the clock tree, in which ADB-PULLUP (or ADB-
PULLUP-Q) has decided that an ADB should be inserted in the
node, for each buffer buf jAL, we compute

δjni
¼

XK

m ¼ 1

αni ;m�βj
ni ;m

� �2
ð11Þ

where K is the number of modes. For example, if αn1 ;1 ¼ þ3,
αn1 ;2 ¼ þ1, β1

n1 ;1 ¼ þ3, β1
n1 ;2 ¼ þ2, β2

n1 ;1 ¼ þ1, and β2
n1 ;2 ¼ �1,

then, δ1n1
¼ ð3�3Þ2þð1�2Þ2 ¼ 1 and δ2n1

¼ ð3�1Þ2þð1�
ð�1ÞÞ2 ¼ 8.

2. Select the pair of node and buffer sizing such that the corre-
sponding δ value is minimal and it satisfies the clock skew and
latency constraints. The buffer in the selected node is then
resized accordingly. For the previous example, selecting buf1 is
preferred to that of buf2 for resizing in node n1 since δ1n1 oδ2n1

.
The iteration stops when there is no pair that satisfies the skew
and latency constraints or the resizing causes the number of
ADBs to increase.

3. Update the arrival times at clock sinks according to the buffer
resizing performed in step 2.

Note that the rationale behind the use of δ is that as the smaller
the value of δ in a node is, the more the corresponding buffer
sizing is likely to close to the ADB that has been inserted to the
node, thus, the buffer sizing taking over the role of the ADB with a
minimal impact on the overall timing of the clock tree. We call the
ADB allocation algorithm combined with buffer sizing ADB-PULLUP-
BS for the continuous delay of ADB.
6. Experimental results

The proposed algorithm ADB-PULLUP (continuous delay), ADB-
PULLUP-Q (discrete delay), and ADB-PULLUP-BS (combining buffer
sizing) have been implemented in Python 3 language on a Linux
machine with 8 cores of 3.50 GHz Intel i7 CPU and 16 GB memory.
ISCAS'95 and ITC'99 benchmarks were synthesized with Synopsys
IC Compiler with 45 nm Nangate Open Cell Library. ISPD'09
benchmarks were synthesized using the algorithm in [20]. Each
benchmark was partitioned into 6–10 power domains which are



Table 2
Comparison of results produced by CLK-ADB [16], CLK-ADB-RD [16], ADB-PULLUP, ADB-PULLUP-Q, ADB-PULLUP-BS, and ADB-PULLUP-QBS. Compared to the results by CLK-ADB [16]
and CLK-ADB-RD [16], our proposed algorithm uses, on average under 30–50 ps clock skew bound, 13.5% (¼1�0.865) and 15.8% (¼(1.070 � 0.901)/1.070) fewer numbers of
ADBs for continuous and discrete ADB delays, respectively. In addition, when buffer sizing is integrated, our algorithm uses 31.7% (¼1 � 0.683) and 31.3% (¼(1.070 � 0.735)/
1.070) fewer numbers of ADBs, even reducing the area of ADBs and buffers by 15.0% (¼1 � 0.850) and 16.3% (¼(1.070 � 0.883)/1.070) for continuous and discrete ADB
delays, respectively.

Bench-
mark
circuit

()FFs/
Bufs

Original
skew/lat.
(ps)

Skew
bound
(ps)

Continuous delay Discrete delay

CLK-ADB [16] ADB-PULLUP ADB-PULLUP-BS CLK-ADB-RD [16] ADB-PULLUP-Q ADB-PULLUP-QBS

()
ADBs

()Area ()ADBs
Area

()ADBs
Area

()ADBs
Area

()ADBs
Area

()ADBs
Area

30 27 156.1 25 151.5 20 135.4 42 228.1 29 171.5 25 158.7
s35932 1728/97 264.1/545.1 40 25 147.0 23 140.0 19 126.9 26 151.7 24 146.0 19 129.1

50 25 144.5 23 137.8 19 124.7 25 145.2 23 139.1 19 125.9

30 31 212.1 27 196.1 22 180.6 36 235.5 28 202.3 23 186.5
s38417 1564/89 387.1/612.1 40 28 197.9 25 184.6 20 169.0 31 211.8 27 195.4 20 171.3

50 26 186.5 23 173.1 18 164.4 29 200.8 25 183.9 18 168.1

30 22 138.3 20 127.3 13 123.2 22 138.2 21 132.8 17 133.8
s38584 1168/66 299.8/552.8 40 18 118.9 16 107.3 11 107.4 21 133.4 20 126.5 16 125.1

50 18 118.8 16 105.7 11 104.6 18 118.9 16 106.3 11 105.5

30 29 174.8 25 160.0 19 157.7 35 203.5 29 179.8 24 176.7
B17 1312/89 287.7/654.7 40 26 159.5 22 143.8 15 139.0 30 179.7 24 154.0 16 142.8

50 26 158.4 22 141.7 15 135.4 26 158.4 22 142.7 15 137.2

30 150 1010.1 120 896.4 105 849.1 155 1033.8 122 912.9 110 875.3
B18 2752/173 405.1/825.1 40 147 988.9 118 872.3 99 817.0 153 1024.6 119 883.5 101 830.1

50 144 974.1 118 856.6 94 772.5 149 1003.4 118 861.3 100 810.3

30 32 202.8 24 171.5 21 191.3 33 207.6 24 172.9 19 160.4
B22 583/42 354.2/690.2 40 32 202.7 24 169.1 21 186.9 32 202.8 24 170.5 21 188.4

50 31 197.6 24 165.3 21 179.9 32 202.7 24 168.2 21 183.9

30 13 80.5 13 77.1 11 72.1 13 80.5 13 77.8 12 76.4
F31 273/345 268.8/

1268.5
40 13 80.5 13 75.8 7 57.2 13 80.5 13 76.5 11 71.4

50 7 50.9 7 47.4 7 47.4 7 50.9 7 47.5 7 47.5

30 30 171.8 24 136.9 21 128.5 30 171.8 24 138.3 18 121.9
F34 157/218 211.2/1137.5 40 30 171.5 24 135.1 21 126.3 30 171.8 24 136.5 21 127.7

50 30 171.5 24 133.3 18 112.9 30 171.5 24 134.8 19 119.4
Average relative values 1 1 0.865 0.894 0.683 0.850 1.070 1.055 0.901 0.928 0.735 0.883

The columns indicated by “Area” represent the sum of the areas of ADBs, ADB control logic and resized buffers in μm2.

Fig. 8. Comparison of the numbers of ADBs allocated (bar) and run time (line) of ADB-PULLUP-Q (orange), exhaustive algorithm (blue), and ADB-PULLUP-QBS(green). The run
time is in log-scale. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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able to operate in two different supply voltage levels, 0.95 V and
1.1 V.

Table 2 summarizes the results produced by applying CLK-ADB
[16] (continuous delay), CLK-ADB-RD (discrete delay)[16], ADB-
PULLUP, ADB-PULLUP-Q, ADB-PULLUP-BS and ADB-PULLUP-QBS to the
benchmark clock trees using four power modes. The columns in
the left part of Table 2 represent the number of flip-flop, the
number of clock buffers, the worst clock skew, the worst clock
latency in the four power modes of the input clock trees, and the
clock skew constraint. The columns in the middle part show the
results by CLK-ADB [16], ADB-PULLUP, ADB-PULLUP-BS, ADB-PULLUP-
QBS. It is observed that ADB-PULLUP uses consistently less number
of ADBs compared to CLK-ADB. The results shown in the right part
indicate that ADB-PULLUP-Q uses considerably less ADBs than CLK-
ADB-RD. This is because CLK-ADB-RD relies on re-iteration with
tighter skew bound when clock skew violation occurs after delay
quantization while ADB-PULLUP-Q can use quantized delay dire-
ctly during its bottom-up phase. In addition, ADB-PULLUP-BS and



Fig. 9. The changes of the average number of ADBs used by CLK-ADB [16] and ADB-
PULLUP by varying the number of power modes used.

Fig. 10. Run time of CLK-ADB [16], CLK-ADB-RD [16], ADB-PULLUP, ADB-PULLUP-Q,
ADB-PULLUP-BS, and ADB-PULLUP-QBS. CLK-ADB-RD took about 16 s for a circuit with
2752 sinks.
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ADB-PULLUP-QBS further reduce the number of ADBs over that of
ADB-PULLUP and ADB-PULLUP-Q.

Additionally, we performed an experiment to check the effec-
tiveness of the proposed algorithm combined with buffer sizing.
Fig. 8 shows the results on ISCAS'89 s382 benchmark circuit, which
was synthesized to have 10 clock tree buffers. The experiment was
done by varying the clock skew and buffer library, The averaged
statistics are shown on the graph in Fig. 8. It is shown that the
proposed algorithm clearly uses much fewer number of ADBs over
the original result, but uses a little more ADBs than that of the
optimal allocation with buffer sizing. However, our run time is
very small compared to that of the exhaustive algorithm.

Fig. 9 shows the average numbers of ADBs allocated by CLK-
ADB [16] and our ADB-PULLUP when the number of modes varies.
Clearly, ADB-PULLUP always uses less ADBs in all situations. The gap
between the results increases as we increase the number of modes
used since it is less likely that the ADB allocation in one mode
coincides with the allocation in another mode. However, another
factor to be considered is that as the number of modes increases,
more buffers would be replaced with ADBs, which increases the
chance of the coincidence. The actual gap is a complex function of
these two factors.

Fig. 10 shows the run time of CLK-ADB [16], CLK-ADB-RD [16],
and proposed algorithms. ADB-PULLUP and ADB-PULLUP-BS take
comparable run time with that of CLK-ADB [16], and ADB-PULLUP-Q
takes a short time compared to that of CLK-ADB-RD [16] because it
does not rely on iterations. The run times of ADB-PULLUP and ADB-
PULLUP-Q are theoretically OðN log NÞ, but they are somewhat
arbitrary in practice. This might be because READJUST function does
not traverse all the children when an ADB is not allocated and α
becomes 0.
7. Conclusions

In this paper, we proposed a polynomial-time optimal algo-
rithm to the problem of ADB allocation on clock trees for the
continuous ADB delay. Then, based on the algorithm, we proposed
a much simple and predictable solution to the ADB allocation
problem for the discrete ADB delay. In addition, we proposed an
effective solution to the combined problem of ADB allocation and
buffer sizing. From the experimental results on benchmarks, it was
shown that compared to the results by the best-known ADB
allocation algorithm, our proposed algorithm uses, on average
under 30–50 ps clock skew bound, 13.5% and 15.8% fewer numbers
of ADBs for continuous and discrete ADB delays, respectively. In
addition, when buffer sizing is integrated, our algorithm uses 31.7%
and 31.3% fewer numbers of ADBs, even reducing the area of ADBs
and buffers by 15.0% and 16.3% for continuous and discrete ADB
delays, respectively. Practically, our theoretical outcomes of this
work can be applied usefully to the diverse environments (e.g.,
non-uniform thermal effect) with the dynamically varying
clock skew.
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